Concerning Connected, Pseudocompact Abelian Groups
نویسنده
چکیده
It is known that if P is either the property w-bounded or countably compact, then for every cardinal a 2 w there is a P-group G such that H.G = a and no proper, dense subgroup of G is a P-group. What happens when P is the property pseudocompact? The first-listed author and Robertson have shown that every zero-dimensional Abelian P-group G with H.G > o has a proper, dense, P-group. Turning to the case of connected P-groups, the present authors show the following results: Let G be a connected, pseudocompact, Abelian group with WG = a > W. If any one of the following conditions holds, then G has a proper, dense (necessarily connected) pseudocompact subgroup: (a) wG< c; (b) IGI 2 a”; (c) a is a strong limit cardinal and cf(a) > w; (d) ltor GI > c; (e) G is not divisible.
منابع مشابه
Imposing pseudocompact group topologies on Abelian groups
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m(α) ≤ 2. We show: Theorem 3.3. Among groups of cardinality γ, the group ⊕γQ serves as a “test space” for the availability of a pseudocompact group topology in this sense: If m(α) ≤ γ ≤ 2 then ⊕γQ admits a (necessarily connect...
متن کاملPseudocompact Group Topologies with No Infinite Compact Subsets
We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ♯). This criterion is used in conjunction with an analysis of the algebraic structure of pseudocompact groups to obtain, under the Generalized Continuum Hypothe...
متن کاملExtremal pseudocompact Abelian groups : A unified treatment
The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039– 4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.
متن کاملExtremal Pseudocompact Abelian Groups Are Compact Metrizable
Every pseudocompact Abelian group of uncountable weight has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology.
متن کاملNon-Abelian Pseudocompact Groups
Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...
متن کامل